Conformal and geometric properties of the Camassa-Holm hierarchy
نویسنده
چکیده
Integrable equations with second order Lax pair like KdV and CamassaHolm (CH) exhibit interesting conformal properties and can be written in terms of the so-called conformal invariants (Schwarz form). These properties for the CH hierarchy are discussed in this contribution. The squared eigenfunctions of the spectral problem, associated to the Camassa-Holm equation represent a complete basis of functions, which helps to describe the Inverse Scattering Transform (IST) for the Camassa-Holm hierarchy as a Generalised Fourier Transform (GFT). Using GFT we describe explicitly some members of the CH hierarchy, including integrable deformations for the CH equation. Also we show that solutions of some 2+1-dimensional generalizations of CH can be constructed via the IST for the CH hierarchy. MSC: 37K10, 37K15, 37K30
منابع مشابه
Conformal Properties and Bäcklund Transform for the Associated Camassa-Holm Equation
Integrable equations exhibit interesting conformal properties and can be written in terms of the so-called conformal invariants. The most basic and important example is the KdV equation and the corresponding Schwarz-KdV equation. Other examples, including the Camassa-Holm equation and the associated Camassa-Holm equation are investigated in this paper. It is shown that the Bäcklund transform is...
متن کاملGeneralised Fourier transform for the Camassa-Holm hierarchy
The squared eigenfunctions of the spectral problem associated to the Camassa-Holm equation represent a complete basis of functions, which helps to describe the Inverse Scattering Transform for the Camassa-Holm hierarchy as a Generalised Fourier transform. The main result of this work is the derivation of the completeness relation for the squared solutions of the Camassa-Holm spectral problem. W...
متن کاملReal-valued algebro-geometric solutions of the two-component Camassa–Holm hierarchy
We provide a construction of the two-component Camassa–Holm (CH-2) hierarchy employing a new zero-curvature formalism and identify and describe in detail the isospectral set associated to all real-valued, smooth, and bounded algebro-geometric solutions of the nth equation of the stationary CH-2 hierarchy as the real n-dimensional torus Tn. We employ Dubrovintype equations for auxiliary divisors...
متن کاملOn Time Fractional Modifed Camassa-Holm and Degasperis-Procesi Equations by Using the Haar Wavelet Iteration Method
The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is...
متن کاملReal-valued algebro-geometric solutions of the Camassa-Holm hierarchy.
We provide a detailed treatment of real-valued, smooth and bounded algebro-geometric solutions of the Camassa-Holm (CH) hierarchy and describe the associated isospectral torus. We employ Dubrovin-type equations for auxiliary divisors and certain aspects of direct and inverse spectral theory for self-adjoint Hamiltonian systems. In particular, we rely on Weyl-Titchmarsh theory for singular (cano...
متن کامل